Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2314793121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442158

RESUMO

The 1986 disaster at the Chornobyl Nuclear Power Plant transformed the surrounding region into the most radioactive landscape known on the planet. Whether or not this sudden environmental shift selected for species, or even individuals within a species, that are naturally more resistant to mutagen exposure remains an open question. In this study, we collected, cultured, and cryopreserved 298 wild nematode isolates from areas varying in radioactivity within the Chornobyl Exclusion Zone. We sequenced and assembled genomes de novo for 20 Oscheius tipulae strains, analyzed their genomes for evidence of recent mutation acquisition in the field, and observed no evidence of an association between mutation and radioactivity at the sites of collection. Multigenerational exposure of each of these strains to several chemical mutagens in the lab revealed that strains vary heritably in tolerance to each mutagen, but mutagen tolerance cannot be predicted based on the radiation levels at collection sites, and Chornobyl isolates were not systematically more resistant than strains from undisturbed habitats. In sum, the absence of mutational signatures does not reflect unique capacity for tolerating DNA damage.


Assuntos
Acidente Nuclear de Chernobyl , Exposição à Radiação , Mutagênicos , Exposição Ambiental , Fenótipo
2.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398032

RESUMO

The 1986 disaster at the Chornobyl Nuclear Power Plant transformed the surrounding region into the most radioactive landscape known on the planet. Questions remain regarding whether this sudden environmental shift selected for species, or even individuals within a species, that are naturally more resistant to radiation exposure. We collected, cultured, and cryopreserved 298 wild nematodes isolates from areas varying in radioactivity within the Chornobyl Exclusion Zone. We sequenced and assembled genomes de novo for 20 Oschieus tipulae strains, analyzed their genomes for evidence of recent mutation acquisition in the field and saw no evidence of an association between mutation and radiation level at the sites of collection. Multigenerational exposure of each of these strains to several mutagens in the lab revealed that strains vary heritably in tolerance to each mutagen, but mutagen tolerance cannot be predicted based on the radiation levels at collection sites.

3.
PLoS Genet ; 19(3): e1010319, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976799

RESUMO

One of the most common cell shape changes driving morphogenesis in diverse animals is the constriction of the apical cell surface. Apical constriction depends on contraction of an actomyosin network in the apical cell cortex, but such actomyosin networks have been shown to undergo continual, conveyor belt-like contractions before the shrinking of an apical surface begins. This finding suggests that apical constriction is not necessarily triggered by the contraction of actomyosin networks, but rather can be triggered by unidentified, temporally-regulated mechanical links between actomyosin and junctions. Here, we used C. elegans gastrulation as a model to seek genes that contribute to such dynamic linkage. We found that α-catenin and ß-catenin initially failed to move centripetally with contracting cortical actomyosin networks, suggesting that linkage is regulated between intact cadherin-catenin complexes and actomyosin. We used proteomic and transcriptomic approaches to identify new players, including the candidate linkers AFD-1/afadin and ZYX-1/zyxin, as contributing to C. elegans gastrulation. We found that ZYX-1/zyxin is among a family of LIM domain proteins that have transcripts that become enriched in multiple cells just before they undergo apical constriction. We developed a semi-automated image analysis tool and used it to find that ZYX-1/zyxin contributes to cell-cell junctions' centripetal movement in concert with contracting actomyosin networks. These results identify several new genes that contribute to C. elegans gastrulation, and they identify zyxin as a key protein important for actomyosin networks to effectively pull cell-cell junctions inward during apical constriction. The transcriptional upregulation of ZYX-1/zyxin in specific cells in C. elegans points to one way that developmental patterning spatiotemporally regulates cell biological mechanisms in vivo. Because zyxin and related proteins contribute to membrane-cytoskeleton linkage in other systems, we anticipate that its roles in regulating apical constriction in this manner may be conserved.


Assuntos
Actomiosina , Caenorhabditis elegans , Animais , Actomiosina/genética , Actomiosina/metabolismo , Zixina/genética , Zixina/metabolismo , Caenorhabditis elegans/metabolismo , Constrição , Proteômica , Junções Intercelulares/genética , Junções Intercelulares/metabolismo , Morfogênese/genética
4.
Ecol Evol ; 12(7): e9124, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35898425

RESUMO

Factors shaping the distribution and abundance of species include life-history traits, population structure, and stochastic colonization-extinction dynamics. Field studies of model species groups help reveal the roles of these factors. Species of Caenorhabditis nematodes are highly divergent at the sequence level but exhibit highly conserved morphology, and many of these species live in sympatry on microbe-rich patches of rotten material. Here, we use field experiments and large-scale opportunistic collections to investigate species composition, abundance, and colonization efficiency of Caenorhabditis species in two of the world's best-studied lowland tropical field sites: Barro Colorado Island in Panamá and La Selva in Sarapiquí, Costa Rica. We observed seven species of Caenorhabditis, four of them known only from these collections. We formally describe two species and place them within the Caenorhabditis phylogeny. While these localities contain species from many parts of the phylogeny, both localities were dominated by globally distributed androdiecious species. We found that Caenorhabditis individuals were able to colonize baits accessible only through phoresy and preferentially colonized baits that were in direct contact with the ground. We estimate the number of colonization events per patch to be low.

5.
J Vis Exp ; (179)2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35156660

RESUMO

Beyond being robust experimental model organisms, Caenorhabditis elegans and its relatives are also real animals that live in nature. Studies of wild nematodes in their natural environments are valuable for understanding many aspects of biology, including the selective regimes in which distinctive genomic and phenotypic characters evolve, the genetic basis for complex trait variation, and the natural genetic diversity fundamental to all animal populations. This manuscript describes a simple and efficient method for extracting nematodes from their natural substrates, including rotting fruits, flowers, fungi, leaf litter, and soil. The Baermann funnel method, a classical nematology technique, selectively isolates active nematodes from their substrates. Because it recovers nearly all active worms from the sample, the Baermann funnel technique allows for the recovery of rare and slow-growing genotypes that co-occur with abundant and fast-growing genotypes, which might be missed in extraction methods that involve multiple generations of reproduction. The technique is also well suited to addressing metagenetic, population-genetic, and ecological questions. It captures the entire population in a sample simultaneously, allowing an unbiased view of the natural distribution of ages, sexes, and genotypes. The protocol allows for deployment at scale in the field, rapidly converting substrates into worm plates, and the authors have validated it through fieldwork on multiple continents.


Assuntos
Nematoides , Animais , Caenorhabditis elegans/genética , Meio Ambiente , Genótipo , Nematoides/genética , Solo
6.
Bioinformatics ; 36(8): 2581-2583, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31899488

RESUMO

SUMMARY: Differential Expression Gene Explorer (DrEdGE) is a web-based tool that guides genomicists through easily creating interactive online data visualizations, which colleagues can query according to their own conditions to discover genes, samples or patterns of interest. We demonstrate DrEdGE's features with three example websites generated from publicly available datasets-human neuronal tissue, mouse embryonic tissue and Caenorhabditis elegans whole embryos. DrEdGE increases the utility of large genomics datasets by removing technical obstacles to independent exploration. AVAILABILITY AND IMPLEMENTATION: Freely available at http://dredge.bio.unc.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genômica , Software , Animais , Humanos , Camundongos
7.
Dev Cell ; 38(4): 430-44, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27554860

RESUMO

During embryonic development, cells must establish fates, morphologies, and behaviors in coordination with one another to form a functional body. A prevalent hypothesis for how this coordination is achieved is that each cell's fate and behavior is determined by a defined mixture of RNAs. Only recently has it become possible to measure the full suite of transcripts in a single cell. Here we quantify genome-wide mRNA abundance in each cell of the Caenorhabditis elegans embryo up to the 16-cell stage. We describe spatially dynamic expression, quantify cell-specific differential activation of the zygotic genome, and identify genes that were previously unappreciated as being critical for development. We present an interactive data visualization tool that allows broad access to our dataset. This genome-wide single-cell map of mRNA abundance, alongside the well-studied life history and fate of each cell, describes at a cellular resolution the mRNA landscape that guides development.


Assuntos
Caenorhabditis elegans/embriologia , Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Embrião não Mamífero/citologia , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Análise de Sequência de RNA , Transcriptoma/genética , Zigoto/citologia
8.
Genetics ; 202(1): 123-39, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26434722

RESUMO

Neural tube defects including spina bifida are common and severe congenital disorders. In mice, mutations in more than 200 genes can result in neural tube defects. We hypothesized that this large gene set might include genes whose homologs contribute to morphogenesis in diverse animals. To test this hypothesis, we screened a set of Caenorhabditis elegans homologs for roles in gastrulation, a topologically similar process to vertebrate neural tube closure. Both C. elegans gastrulation and vertebrate neural tube closure involve the internalization of surface cells, requiring tissue-specific gene regulation, actomyosin-driven apical constriction, and establishment and maintenance of adhesions between specific cells. Our screen identified several neural tube defect gene homologs that are required for gastrulation in C. elegans, including the transcription factor sptf-3. Disruption of sptf-3 in C. elegans reduced the expression of early endodermally expressed genes as well as genes expressed in other early cell lineages, establishing sptf-3 as a key contributor to multiple well-studied C. elegans cell fate specification pathways. We also identified members of the actin regulatory WAVE complex (wve-1, gex-2, gex-3, abi-1, and nuo-3a). Disruption of WAVE complex members reduced the narrowing of endodermal cells' apical surfaces. Although WAVE complex members are expressed broadly in C. elegans, we found that expression of a vertebrate WAVE complex member, nckap1, is enriched in the developing neural tube of Xenopus. We show that nckap1 contributes to neural tube closure in Xenopus. This work identifies in vivo roles for homologs of mammalian neural tube defect genes in two manipulable genetic model systems.


Assuntos
Caenorhabditis elegans/genética , Morfogênese/genética , Tubo Neural/embriologia , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular , Membrana Celular , Desenvolvimento Embrionário/genética , Endoderma/metabolismo , Gastrulação/genética , Genes de Helmintos , Humanos , Interferência de RNA , RNA de Helmintos , Análise de Sequência de RNA , Fatores de Transcrição/genética , Vertebrados/embriologia , Vertebrados/genética , Xenopus laevis
9.
Proc Natl Acad Sci U S A ; 112(52): 15976-81, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26598659

RESUMO

Horizontal gene transfer (HGT), or the transfer of genes between species, has been recognized recently as more pervasive than previously suspected. Here, we report evidence for an unprecedented degree of HGT into an animal genome, based on a draft genome of a tardigrade, Hypsibius dujardini. Tardigrades are microscopic eight-legged animals that are famous for their ability to survive extreme conditions. Genome sequencing, direct confirmation of physical linkage, and phylogenetic analysis revealed that a large fraction of the H. dujardini genome is derived from diverse bacteria as well as plants, fungi, and Archaea. We estimate that approximately one-sixth of tardigrade genes entered by HGT, nearly double the fraction found in the most extreme cases of HGT into animals known to date. Foreign genes have supplemented, expanded, and even replaced some metazoan gene families within the tardigrade genome. Our results demonstrate that an unexpectedly large fraction of an animal genome can be derived from foreign sources. We speculate that animals that can survive extremes may be particularly prone to acquiring foreign genes.


Assuntos
Transferência Genética Horizontal , Genoma/genética , Biblioteca Genômica , Análise de Sequência de DNA/métodos , Tardígrados/genética , Animais , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , DNA de Plantas/química , DNA de Plantas/genética , DNA Viral/química , DNA Viral/genética , Filogenia , Tardígrados/classificação
10.
PLoS One ; 6(7): e22953, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829563

RESUMO

We investigated differential gene expression between functionally specialized feeding polyps and swimming medusae in the siphonophore Nanomia bijuga (Cnidaria) with a hybrid long-read/short-read sequencing strategy. We assembled a set of partial gene reference sequences from long-read data (Roche 454), and generated short-read sequences from replicated tissue samples that were mapped to the references to quantify expression. We collected and compared expression data with three short-read expression workflows that differ in sample preparation, sequencing technology, and mapping tools. These workflows were Illumina mRNA-Seq, which generates sequence reads from random locations along each transcript, and two tag-based approaches, SOLiD SAGE and Helicos DGE, which generate reads from particular tag sites. Differences in expression results across workflows were mostly due to the differential impact of missing data in the partial reference sequences. When all 454-derived gene reference sequences were considered, Illumina mRNA-Seq detected more than twice as many differentially expressed (DE) reference sequences as the tag-based workflows. This discrepancy was largely due to missing tag sites in the partial reference that led to false negatives in the tag-based workflows. When only the subset of reference sequences that unambiguously have tag sites was considered, we found broad congruence across workflows, and they all identified a similar set of DE sequences. Our results are promising in several regards for gene expression studies in non-model organisms. First, we demonstrate that a hybrid long-read/short-read sequencing strategy is an effective way to collect gene expression data when an annotated genome sequence is not available. Second, our replicated sampling indicates that expression profiles are highly consistent across field-collected animals in this case. Third, the impacts of partial reference sequences on the ability to detect DE can be mitigated through workflow choice and deeper reference sequencing.


Assuntos
Cnidários/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Cnidários/metabolismo , Bases de Dados Genéticas , Hibridização In Situ , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...